OpenFoamのサンプル確認(パラメータやキーワードの覚書)です。
バージョン : Windows版(OpenFOAM-v2206-windows-mingw.exe)
次ページ:メッシュの置き換え
ベース
チュートリアルフォルダ:チュートリアル場所(windows)
引用元
<チュートリアルフォルダ>\multiphase\interFoam\RAS\floatingObject
結果図
気相、液相のモデルになります。
作業
基本的な流れはT703 OpenFoam tipsと同じです。(または作業)
//チュートリアルからサンプルをコピーしておきます。// //0.origから0へ(.org削除) //コマンド:メッシュ作成 blockMesh //コマンド実行 setFields //計算実行// twoPhaseEulerFoam //ParaView用VTK変換// foamToVTK
全体構造
//初期フォルダ・ファイル構成 bubbleColumn ├ 0.orig │ ├ alpha.air │ ├ p │ ├ p_rgh │ ├ T.air │ ├ T.water │ ├ Theta │ ├ U.air │ └ U.water ├ constant │ ├ g │ ├ phaseProperties │ ├ thermophysicalProperties.air │ ├ thermophysicalProperties.water │ ├ turbulenceProperties.air │ └ turbulenceProperties.water ├ system │ ├ blockMeshDict │ ├ controlDict │ ├ fvSchemes │ ├ fvSolution │ └ setFieldsDict ├ Allclean └ Allrun
0.orig
alpha.air
dimensions [0 0 0 0 0 0 0];
internalField uniform 0;
boundaryField
{
inlet
{
type fixedValue;
value uniform 0.5;
}
outlet
{
type inletOutlet;
phi phi.air;
inletValue uniform 1;
value uniform 1;
}
walls
{
type zeroGradient;
}
}
p
FoamFile
{
version 2.0;
format ascii;
class volScalarField;
object p;
}dimensions [1 -1 -2 0 0 0 0];
internalField uniform 1e5;
boundaryField
{
inlet
{
type calculated;
value $internalField;
}
outlet
{
type calculated;
value $internalField;
}
walls
{
type calculated;
value $internalField;
}
}
p_rgh
dimensions [1 -1 -2 0 0 0 0];
internalField uniform 1e5;
boundaryField
{
inlet
{
type fixedFluxPressure;
value $internalField;
}
outlet
{
type prghPressure;
p $internalField;
value $internalField;
}
walls
{
type fixedFluxPressure;
value $internalField;
}
}
T.air
dimensions [0 0 0 1 0 0 0];
internalField uniform 300;
boundaryField
{
walls
{
type zeroGradient;
}
outlet
{
type inletOutlet;
phi phi.air;
inletValue $internalField;
value $internalField;
}
inlet
{
type fixedValue;
value $internalField;
}
frontAndBackPlanes
{
type empty;
}
}
T.water
dimensions [0 0 0 1 0 0 0];
internalField uniform 350;
boundaryField
{
walls
{
type zeroGradient;
}
outlet
{
type inletOutlet;
phi phi.water;
inletValue $internalField;
value $internalField;
}
inlet
{
type fixedValue;
value $internalField;
}
frontAndBackPlanes
{
type empty;
}
}
Theta
dimensions [0 2 -2 0 0 0 0];
internalField uniform 0.0;
boundaryField
{
inlet
{
type fixedValue;
value uniform 1.0e-7;
}
outlet
{
type inletOutlet;
inletValue uniform 1.0e-7;
value uniform 1.0e-7;
}
walls
{
type zeroGradient;
}
defaultFaces
{
type empty;
}
}
U.air
dimensions [0 1 -1 0 0 0 0];
internalField uniform (0 0.1 0);
boundaryField
{
inlet
{
type fixedValue;
value $internalField;
}
outlet
{
type pressureInletOutletVelocity;
phi phi.air;
value $internalField;
}
walls
{
type fixedValue;
value uniform (0 0 0);
}
}
U.water
dimensions [0 1 -1 0 0 0 0];
internalField uniform (0 0 0);
boundaryField
{
inlet
{
type fixedValue;
value $internalField;
}
outlet
{
type pressureInletOutletVelocity;
phi phi.water;
value $internalField;
}
walls
{
type fixedValue;
value uniform (0 0 0);
}
}
constant
g
dimensions [0 1 -2 0 0 0 0]; value (0 -9.81 0);
phaseProperties
phases (air water);
air
{
diameterModel isothermal;
isothermalCoeffs
{
d0 3e-3;
p0 1e5;
}
residualAlpha 1e-6;
}
water
{
diameterModel constant;
constantCoeffs
{
d 1e-4;
}
residualAlpha 1e-6;
}
blending
{
default
{
type linear;
maxFullyDispersedAlpha.air 0.3;
maxPartlyDispersedAlpha.air 0.5;
maxFullyDispersedAlpha.water 0.3;
maxPartlyDispersedAlpha.water 0.5;
}
}
sigma
(
(air and water) 0.07
);
aspectRatio
(
(air in water)
{
type constant;
E0 1.0;
}
(water in air)
{
type constant;
E0 1.0;
}
);
drag
(
(air in water)
{
type SchillerNaumann;
residualRe 1e-3;
swarmCorrection
{
type none;
}
}
(water in air)
{
type SchillerNaumann;
residualRe 1e-3;
swarmCorrection
{
type none;
}
}
(air and water)
{
type segregated;
residualAlpha 1e-6;
m 0.5;
n 8;
swarmCorrection
{
type none;
}
}
);
virtualMass
(
(air in water)
{
type constantCoefficient;
Cvm 0.5;
}
(water in air)
{
type constantCoefficient;
Cvm 0.5;
}
);
heatTransfer
(
(air in water)
{
type RanzMarshall;
residualAlpha 1e-4;
}
(water in air)
{
type RanzMarshall;
residualAlpha 1e-4;
}
);
lift
(
);
wallLubrication
(
);
turbulentDispersion
(
);
// Minimum allowable pressure
pMin 10000;
thermophysicalProperties.air
thermoType
{
type heRhoThermo;
mixture pureMixture;
transport const;
thermo hConst;
equationOfState perfectGas;
specie specie;
energy sensibleInternalEnergy;
}
mixture
{
specie
{
molWeight 28.9;
}
thermodynamics
{
Cp 1007;
Hf 0;
}
transport
{
mu 1.84e-05;
Pr 0.7;
}
}
thermophysicalProperties.water
thermoType
{
type heRhoThermo;
mixture pureMixture;
transport const;
thermo eConst;
equationOfState perfectFluid;
specie specie;
energy sensibleInternalEnergy;
}
mixture
{
specie
{
molWeight 18;
}
equationOfState
{
R 3000;
rho0 1027;
}
thermodynamics
{
Cv 4195;
Hf 0;
}
transport
{
mu 3.645e-4;
Pr 2.289;
}
}
turbulenceProperties.air
simulationType laminar;
turbulenceProperties.water
simulationType laminar;
system
blockMeshDict
scale 1;
vertices
(
(0 0 0)
(0.15 0 0)
(0.15 1 0)
(0 1 0)
(0 0 0.1)
(0.15 0 0.1)
(0.15 1 0.1)
(0 1 0.1)
);
blocks
(
hex (0 1 2 3 4 5 6 7) (25 75 1) simpleGrading (1 1 1)
);
edges
(
);
patches
(
patch inlet
(
(1 5 4 0)
)
patch outlet
(
(3 7 6 2)
)
wall walls
(
(0 4 7 3)
(2 6 5 1)
)
);
mergePatchPairs
(
);
controlDict
application twoPhaseEulerFoam;
startFrom startTime;
startTime 0;
stopAt endTime;
endTime 100;
deltaT 0.005;
writeControl runTime;
writeInterval 1;
purgeWrite 0;
writeFormat ascii;
writePrecision 6;
writeCompression off;
timeFormat general;
timePrecision 6;
runTimeModifiable yes;
adjustTimeStep no;
maxCo 0.5;
maxDeltaT 1;
functions
{
add1
{
type add;
libs (fieldFunctionObjects);
fields (U.air U.water);
result U.total;
writeControl writeTime;
}
fieldAverage1
{
type fieldAverage;
libs (fieldFunctionObjects);
writeControl writeTime;
fields
(
U.air
{
mean on;
prime2Mean off;
base time;
}
U.water
{
mean on;
prime2Mean off;
base time;
}
alpha.air
{
mean on;
prime2Mean off;
base time;
}
p
{
mean on;
prime2Mean off;
base time;
}
);
}
}
fvSchemes
ddtSchemes
{
default Euler;
}
gradSchemes
{
default Gauss linear;
}
divSchemes
{
default none;
div(phi,alpha.air) Gauss vanLeer;
div(phir,alpha.air) Gauss vanLeer;
"div\(alphaRhoPhi.*,U.*\)" Gauss limitedLinearV 1;
"div\(phi.*,U.*\)" Gauss limitedLinearV 1;
"div\(alphaRhoPhi.*,(h|e).*\)" Gauss limitedLinear 1;
"div\(alphaRhoPhi.*,K.*\)" Gauss limitedLinear 1;
"div\(alphaPhi.*,p\)" Gauss limitedLinear 1;
"div\(\(\(\(alpha.*\*thermo:rho.*\)*nuEff.*\)\*dev2\(T\(grad\(U.*\)\)\)\)\)" Gauss linear;
}
laplacianSchemes
{
default Gauss linear uncorrected;
}
interpolationSchemes
{
default linear;
}
snGradSchemes
{
default uncorrected;
}
fvSolution
solvers
{
alpha.air
{
nAlphaCorr 1;
nAlphaSubCycles 2;
}
p_rgh
{
solver GAMG;
smoother DIC;
tolerance 1e-8;
relTol 0;
}
p_rghFinal
{
$p_rgh;
relTol 0;
}
"U.*"
{
solver smoothSolver;
smoother symGaussSeidel;
tolerance 1e-5;
relTol 0;
minIter 1;
}
"e.*"
{
solver smoothSolver;
smoother symGaussSeidel;
tolerance 1e-8;
relTol 0;
minIter 1;
}
}
PIMPLE
{
nOuterCorrectors 3;
nCorrectors 1;
nNonOrthogonalCorrectors 0;
}
relaxationFactors
{
equations
{
".*" 1;
}
}
setFieldsDict
defaultFieldValues
(
volScalarFieldValue alpha.air 1
);
regions
(
boxToCell
{
box (0 0 -0.1) (0.15 0.701 0.1);
fieldValues
(
volScalarFieldValue alpha.air 0
);
}
);
コメント