強度特性

K054 両持ち梁(支持) 曲げについて 計算

この記事は約2分で読めます。

梁の曲げについて記載(類似解析:A112 両持ち梁 曲げ

両端支持の場合

(1-1) はA地点の反力,(1-2) はB地点の反力です.
\begin{align}
\small Ra = \frac{P\cdot l2}{L}\tag{1-1} \\
\end{align}

\begin{align}
\small Rb = \frac{P\cdot l1}{L}\tag{1-2}
\end{align}


(2-1)は最大モーメントです.

\begin{align}
\small Mmax = \frac{P\cdot l1\cdot l2}{L} \tag{2-1}
\end{align}

(3-1)はL1>L2の変位,(3-2)はL1<L2 の変位です.
\begin{align}
δ\small max = \frac{W\cdot l2}{3EIL}\Biggl( \frac{l1(L+l2)}{3}\Biggl )^{\frac{3}{2}} \tag{3-1} \\
\end{align}

\begin{align}
δ\small max = \frac{W\cdot l1}{3EIL}\Biggl( \frac{l2(L+l1)}{3}\Biggl )^{\frac{3}{2}} \tag{3-2} \\
\end{align}

入力
部位 長さ(mm)
L1
L2
b
h

入力荷重
荷重 入力値(N)
P
物性値
項目 入力値(N/mm2)
ヤング率 E


結果
項目 結果値
変位 (mm)
最大応力

(N/mm2)

内訳HOLD





コメント

Translate »
タイトルとURLをコピーしました